ELECTRICAL ENGINEERING DEPARTMENT

TITLE : DESIGNING,CONFIGURE AND SIMULATE LAN NETWORKING USING PACKET TRACER

OBJECTIVES : At the end of the experiment, students should be able to;
i. Design LAN network using Packet Tracer 5.0
ii. Configure IP address and subnet mask in terminal and switch using Packet Tracer 5.0

APPARATUS AND RESOURCES : \square Notebook with Windows XP Professional, Packet Tracer 5.0
THEORY (PACKET TRACER) : Packet Tracer is a interactive network simulation and learning tool for Cisco CCNA instructors and students. It allows users to create network topologies, configure devices, inject packets, and simulate a network with multiple visual representations. This release of Packet Tracer focuses on supporting more of the networking protocols taught in the CCNA curriculum.
THEORY (IP ADRESS) : IP is an address of a computer or other network device on a network using IP or TCP/IP.
For example the number "166.70.10.23" is an example of such as an address. These addresses are similar to addresses used on houses and help data reach its appropriate destination on a network. There are five classes of available IP ranges: Class A. Class B, Class C, Class D and Class E, while only A, B and C are commonly used. Each class allows for a range of valid IP addresses. Below is a listing of these addresses.

Thirty-two bits ($4 ; 8$), or 4 bytes

QUESTION :

Design the LAN network to produce DTK6 LAN Network using Packet Tracer 5.0 which consist of 10 terminals connecting with 3 switches. Configure it's IP address and subnet mask before you simulate the LAN connection. Produce the LAN network in your report.

TERMINAL	IP ADDRESS	SUBNET MASK
COMPUTER 1	192.168 .10 .4	255.255 .255 .0
COMPUTER 2	192.168 .10 .5	255.255 .255 .0
COMPUTER 3	192.168 .10 .6	255.255 .255 .0
COMPUTER 4	192.168 .10 .7	255.255 .255 .0
COMPUTER 5	192.168 .10 .8	255.255 .255 .0
COMPUTER 6	192.168 .10 .9	255.255 .255 .0
COMPUTER 7	192.168 .10 .10	255.255 .255 .0
COMPUTER 8	192.168 .10 .11	255.255 .255 .0
COMPUTER 9	192.168 .10 .12	255.255 .255 .0
COMPUTER 10	192.168 .10 .13	255.255 .255 .0
SWITCH 1	192.168 .10 .1	255.255 .255 .0
SWITCH 2	192.168 .10 .2	255.255 .255 .0
SWITCH 3	192.168 .10 .3	255.255 .255 .0

DISCUSSION:

1. (a.) Ping from PC 1 to PC 4 (Print screen the output)
(b.) Ping from PC 5 to PC 9 (Print screen the output)
(c.) Ping from PC 10 to PC 2 (Print screen the output)
2.Differentiate between Hub, Switch, Router and Bridge in term of:
2. Function
3. Diagram
4. Speed
5. Price
6. Characteristic
7. Which Topology (WAN, MAN, LAN) describe each equipment
